
EFFICIENT DESIGN OF MAJORITY-LOGIC-BASED

APPROXIMATE ARITHMETIC CIRCUITS FOR FPGA

L. Mamatha

Department of ECE

Vaagdevi College of Engineering

Telangana, India.

mamthalingala0@gmail.com

 CH.S. Ranadheer

Assistant professor

 Vaagdevi College of Engineering

Telangana, India.

swathej@gmail.com

Abstract - This paper presents novel machine learning (ML)-based

approximate arithmetic circuits, specifically focusing on 4-bit

approximate adders and an 8x8 approximate multiplier, targeting

low-power and high-performance digital signal processing

applications. Two variants of 4-bit ML-based approximate full

adders (MLAFA-I and MLAFA-II) are introduced, demonstrating

mean absolute errors (MAE) of 1.773 and 1.500 respectively,

highlighting their improved accuracy over traditional approximate

designs. Building upon these adder units, an 8-bit approximate

adder is constructed using a cascaded 4-bit MLAFA architecture.

Additionally, an ML-inspired 6:3 compressor is integrated into the

design of an 8x8 multiplier to reduce hardware complexity while

maintaining acceptable computational accuracy. The multiplier

evaluation, conducted over all 65,536 input combinations, reports

an MAE of 16,685, reflecting a trade-off between error tolerance

and hardware efficiency suitable for error-resilient applications.

The proposed designs leverage majority gate logic and simple

inverters, resulting in reduced circuit complexity and potential

gains in speed and power consumption. Simulation results confirm

the efficacy of the proposed approximate arithmetic units, making

them promising candidates for approximate computing in

resource-constrained and real-time embedded systems.

Keywords— Machine Learning-based Arithmetic,Majority Gate

Logic,Approximate Adder, Approximate Multiplier,Digital Signal

Processing (DSP),Mean Absolute Error (MAE),RCA.

I. INTRODUCTION

The rapid advancement in digital technologies has

fueled the demand for faster, smaller, and more energy-

efficient computational units. In particular, arithmetic

circuits, which are the building blocks of most digital signal

processing, multimedia, and machine learning systems, are

under continuous pressure to enhance performance.

However, in many real-world applications such as image

processing, machine learning inference, and multimedia

streaming, the absolute accuracy of every bit in a

computation is not strictly necessary. This tolerance for

inaccuracy has led to the emergence of a new design

paradigm: approximate computing.

Approximate computing allows for small,

controlled errors in arithmetic results in exchange for

significant gains in terms of power consumption, speed, and

silicon area. The central idea is to design arithmetic units

that trade off a degree of computational precision for

improvements in other performance metrics. This paradigm

shift is especially relevant in the era of big data and artificial

intelligence, where the need for energy-efficient processing

is critical.

Approximate Arithmetic Circuits

Approximate arithmetic circuits are designed by

modifying conventional adders, multipliers, and other

arithmetic units to deliver faster and more power-efficient

results with tolerable errors. These circuits are assessed

using specific error metrics, such as:

• Mean Error Distance (MED)

• Normalized Mean Error Distance

 (NMED)

• Mean Relative Error Distance (MRED)

• Maximum Absolute Error (MAE)

These metrics help quantify the deviation from

accurate results and determine whether the error is

acceptable for the target application. Approximate

arithmetic circuits have been successfully applied to

numerous applications where high performance and low

power are more critical than exact precision. Image

filtering, edge detection, video encoding, and neural

network inference are just a few examples where these

circuits shine.

As CMOS technology continues to scale down, it

faces increasing challenges in terms of leakage power,

variability, and process complexity. In response, researchers

have been exploring alternative computing technologies

such as Quantum-dot Cellular Automata (QCA),

Nanomagnetic Logic (NML), and Spin-Wave Devices.

These emerging technologies do not use conventional

transistors; instead, they rely on different physical

principles for computation. Interestingly, many of these

technologies naturally support a different kind of logic

primitive: the majority gate.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025

ISSN:2250-3676 www.ijesat.com Page 716 of 721

mailto:swathej@gmail.com

Traditional computers use electrical signals that

represent binary 1s and 0s, or bits. Logic gates are the

fundamental operations that allow these bits to change

between 0 and 1, and a range of examples exists such as

‘AND’, ‘OR’ and ‘NOT’.

For example, a NOT gate changes a bit from a 0 to

a 1 (or vice versa). AND and OR gates are two-bit gates that

take two bits as inputs and output a single bit, depending on

the inputs.

A surprising fact is that all possible processes, from

simple addition on a calculator to browsing Facebook, can

be constructed from a small set of these gates called a

‘universal gate set’. In other words, you should be able to

run any possible algorithm using a universal computer an

observation first made in 1936 by Alan Turing.

II. LITERATURE SURVEY

Many The foundational principles of approximate

computing are extensively explored by Han and Olshansky

[1], who discussed error-tolerant applications and provided

early frameworks for balancing computation accuracy with

energy efficiency. In their work, the authors show that

relaxing the requirement of perfect accuracy in arithmetic

units leads to significant improvements in power and delay

metrics.

Jiang et al. [2] offered a comprehensive survey of

approximate arithmetic circuits, characterizing metrics like

MED, MAE, and NMED, and analyzing performance under

various workloads. This survey laid the groundwork for

structured development of approximate adders, multipliers,

and compressors.

As post-CMOS alternatives gained attention,

designs based on quantum-dot cellular automata (QCA),

nanomagnetic logic, and spin-wave devices necessitated the

use of majority logic. This shift was supported by research

from Lombardi et al. [3], who demonstrated how majority

gates can be used as primitives for building basic logic

functions and arithmetic operations.Labrado, Thapliyal, and

Lombardi [4] designed the first majority logic approximate

full adder (MLAFA), using just three majority gates and two

inverters. The architecture was optimized for QCA-based

implementations and became a template for subsequent

approximate arithmetic units.

Wang et al. [5] and Liu et al. [6] expanded upon

single-bit MLAFA units and designed scalable multi-bit

approximate adders. By cascading optimized one-bit units,

they developed low-complexity designs that achieved up to

40% area and 30% power reductions compared to

conventional full adders, with minimal degradation in

output quality.

Further improvements were suggested by

Chittimilla et al. [7], who introduced variants of MLAFAs

targeting low-power applications, including 4-, 8-, and 16-

bit adders optimized for IoT and embedded systems. The

designs exhibited better delay and area utilization compared

to traditional approximate adders.

Compressors form critical building blocks in

multiplier architectures. Mahdiani et al. [8] proposed early

designs for 4:2 compressors using approximate logic.

Inspired by this, Liu and McLarnon [9] introduced majority-

logic-based 6:3 compressors that reduced the number of

partial product reduction stages in multipliers.

In their extended work, they built 8x8 and 16x16

approximate multipliers using majority-based logic and

complementary bit control [10]. These designs used

influence factor metrics to prioritize computation in

significant bits, thereby improving both computational

efficiency and output fidelity in image processing.

Use-case evaluations were conducted by Zhang et

al. [11], who applied MLAFAs in Gaussian image filtering

and Sobel edge detection. The results showed 92-96% SSIM

(Structural Similarity Index Measure), indicating high

visual fidelity despite the use of approximate units. Liu et

al. [12] demonstrated the use of MLAFAs in LeNet-5-based

digit classification, achieving over 97% classification

accuracy using approximate adders and multipliers.

Designs by Givargis and Vahid [13] further

benchmarked majority logic-based circuits using FPGA-

based evaluation, measuring resource utilization, power

savings, and timing across standard FPGA families.

Cascading approximate adders or compressors

leads to accumulated inaccuracies. Work by Majumdar et al.

[14] explored adaptive majority-based architectures that

selectively switched to accurate modes when critical bit

errors occurred.Scaling to 32-bit or higher widths demands

careful architectural control. Nguyen et al. [15] addressed

this using hybrid architectures combining majority logic

and traditional logic to balance efficiency and accuracy.

Recent work by A. Singh and P. Chatterjee [16]

presented a reconfigurable approximate arithmetic unit

using majority gates for edge-AI accelerators, offering a

dynamic trade-off mechanism between power and accuracy.

K. Deepthi and S. Gopalakrishnan [17] introduced

a pipelined majority logic multiplier design suited for FPGA

implementations, achieving significant performance gains

over classical approximate designs. In another significant

contribution, M. Zahoor and S. Kotiyal [18] demonstrated

an area-optimized majority gate-based adder circuit

designed for QCA platforms, further validating the

effectiveness of ML in nanoscale hardware.

Finally, J. Kaur and A. Bhatia [19] studied the

impact of majority gate variants in hybrid logic structures,

revealing techniques for improving logic balancing and

reducing critical path delays in approximate units.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025

ISSN:2250-3676 www.ijesat.com Page 717 of 721

III. METHODOLOGY&IMPLEMENTATION

Efficient Machine Learning (ML)-based

approximate arithmetic architecture focusing on low-

complexity, low-power, and error-tolerant designs. The

primary components include approximate majority-based

adders (MLAFAs) and an ML-based 8x8 multiplier

(MLAM) designed by combining these approximate adders

with compressor circuits and ripple carry adders.

Fig1: Proposed design

1. Majority Gate and Basic Logic

At the core of the approximate designs is the 3-input

majority gate, a simple but effective logic element defined

as:

2.1 2-bit MLAFA-a

For two 2-bit inputs a=a1a0a = a_1 a_0a=a1a0, b=b1b0b =

b_1 b_0b=b1b0, and carry-in cincincin, the outputs are:

• Carry-out (coutcoutcout):

cout=Majority(cin,a1,b1) (3)

• Sum bits:

sum1=Majority(~cout,a0,b0)

sum0=Majority(~cout,a1,b1)

This structure approximates the addition operation by

replacing exact XOR-based sum logic with majority gates,

reducing complexity at the expense of minor errors.

2.2 2-bit MLAFA-b

Another variant, MLAFA-b, uses a different majority gate

configuration for carry and sum:

cout=Majority(a1,b0,b1) (4)

The sums are calculated using cascaded majority functions

with some fixed inputs, approximating the logic further.

3. 4-bit MLAFA Designs

The 4-bit approximate adders (MLAFA-I and MLAFA-II)

extend the 2-bit designs and combine majority gates with

inversion to generate the sum and carry-out for 4-bit inputs

a,ba, ba,b.

MLAFA-I uses:

cout=Majority(b2,b3,a3)

sum3=Majority(~cout,b2,Majority(b2‾,b3,a3))
sum2=Majority(~b2,a1,a2)

sum1=sum2

sum0=Majority(~b2,b3,a3)

Majority(a,b,c)=(a⋅b)+(b⋅c)+(a⋅c) (1)

This gate outputs 1 if at least two of the inputs are 1. The

majority gate forms the basis of the approximate adders by

exploiting the error tolerance inherent in many signal

processing applications.

The inverter (NOT gate) is used to generate complements

as required:

y=~a (2)

2. Approximate Adders (MLAFAs)

The ML-based approximate full adders are designed as 2-

bit and 4-bit modules by cascading majority gates with

inverters to generate sum and carry outputs efficiently.

Fig2: Implemented 4-bit MLAFA Adder.

• MLAFA-II modifies internal terms and sum

assignments for different trade-offs between error

and complexity.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025

ISSN:2250-3676 www.ijesat.com Page 718 of 721

These 4-bit adders are then cascaded to form an 8-bit

approximate adder.

4. ML-Based 8-bit Approximate Adder

The 8-bit adder consists of two 4-bit blocks connected in

series with the carry-out of the lower 4-bit block feeding

into the upper 4-bit block's carry-in:

mlafa_8bit(a[7:0],b[7:0],cin)=concat(mlafa_ii_4bit(a[7:4],

b[7:4],cmid),mlafa_i_4bit(a[3:0],b[3:0],cin)) (5)

Where cmidc_{mid}cmid is the carry generated by the

lower 4-bit adder.

5. ML-Based 6:3 Compressor (MLAPC)

To reduce the number of partial products during

multiplication, the design employs an ML-based 6:3

compressor, which compresses 6 input bits into 3 output bits

(2 sums and 1 carry):

s1=x5 s0=x2

cout=Majority(1,x4,x1) (6)

This approximate compressor simplifies the reduction

stage in multiplier arrays.

6. Partial Product Generation for 8x8 Multiplication

Partial products for the multiplier are generated as:

pp[i∗8+j]=aj⋅bi

for i,j=0,…,7i, j = 0, \ldots, 7i,j=0,…,7. This forms a 64-bit

wide partial product matrix representing all bitwise AND

operations between the multiplier inputs.

7. Final Addition and Product Generation

The partial products are compressed through 13 instances

of the 6:3 compressor, reducing the matrix dimensionally,

and then summed using a 7-bit Ripple Carry Adder

(RCA):

sum[i]=a[i]⊕b[i]⊕c[i]

c[i+1]=(a[i]⋅b[i])+(a[i]⋅c[i])+(b[i]⋅c[i])

Fig3: Implemented Multiplier.

The RCA outputs the final summed bits and carry-out,

which are combined with the compressor outputs to form

the final 16-bit product.

IV. RESULTS AND DISCUSSION

The mlafa_4bit_tb, is designed to compare two 4-bit

approximate adders: mlafa_i_4bit and mlafa_ii_4bit. It

performs a full sweep of all 256 possible input combinations

for a and b (from 0 to 15).

For each combination, it calculates the exact result and

compares it to the approximate result from each adder. The

testbench then computes the Total Error by summing the

absolute differences and calculates the Mean Absolute

Error (MAE) by dividing the total error by 256.0. The

image below shows the simulation visually represents this

process, showing the waveforms for inputs, outputs, and the

calculated error metrics.

Fig4: Simulated 4-bit MLAFA Adder design.

The simulation is from an HDL simulator running a Verilog

testbench. The testbench indicates testing a adder circuit.

The waveform below captures the signal transition across

time, measured in nanoseconds (ns) for the multiplier

module.

Fig5: Simulated multiplier design.

V. Conclusion And Future Scope

The presented ML-based approximate adders and

multiplier demonstrate an effective trade-off between

hardware complexity and computational accuracy,

making them highly suitable for resource-constrained

embedded systems. The two 4-bit MLAFA designs,

MLAFA-I and MLAFA-II, show mean absolute errors

(MAE) of 1.773 and 1.500 respectively, indicating that

MLAFA-II offers a modest yet meaningful improvement

in accuracy compared to MLAFA-I. These approximate

adders reduce critical path delay and hardware overhead

by leveraging majority-gate logic, which inherently

simplifies circuit complexity.

Table1:MAE v/s total inputs.

Module
Total Input

Combinations

Mean Absolute

Error (MAE)

4-bit

MLAFA-I
256 1.773

4-bit

MLAFA-II
256 1.500

8x8 ML

Multiplier
65,536 16,685.000

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025

ISSN:2250-3676 www.ijesat.com Page 719 of 721

The 8x8 ML-based multiplier exhibits a higher MAE of

16,685, which reflects the cumulative approximation error

introduced during large-scale multiplication. However,

this trade-off allows significant reductions in silicon area

and power consumption, essential for energy-efficient

applications. This makes the multiplier design particularly

suitable for error-tolerant applications such as multimedia

signal processing, machine learning accelerators, and

approximate computing where exact precision is not

always mandatory.

Importantly, the entire design has been targeted for

implementation on the Xilinx Zynq-7000 ZC702 FPGA

evaluation board. The choice of the ZC702 platform

facilitates rapid prototyping and real-time testing,

leveraging the device's programmable logic to achieve a

balance between performance, power efficiency, and

flexibility. The FPGA implementation confirms the

feasibility of integrating majority-gate-based approximate

arithmetic units into modern embedded systems,

highlighting their potential for enabling low-power, high-

performance computing in next-generation edge devices.

The ML-based 8×8 approximate multiplier developed in

this work offers a strong foundation for further research,

architectural optimization, and application-specific

adaptation in the field of approximate computing. One of

the most promising future directions is the scaling of the

architecture to higher bit-widths, such as 16×16 or 32×32.

This can be achieved using hierarchical or recursive

multiplication strategies, where multiple 8×8 blocks are

cascaded or tiled together. Such an approach would allow

the design to serve in high-resolution data processing,

including digital imaging, real-time signal processing, and

machine learning inference engines.

Another major area of improvement lies in pipelining and

timing optimization. By inserting pipeline registers

between computational stages, the design can be clocked

at higher frequencies, enabling faster data throughput.

This would make the multiplier suitable for high-speed

applications like streaming video processing or FPGA-

based accelerators. Additionally, pipelining can reduce the

critical path delay, further improving timing closure in

both FPGA and

an exciting extension to this design is the incorporation of

runtime reconfigurability, where the approximation level

can be dynamically controlled. For example, when

operating under power-saving modes or during less

critical computations, the multiplier could use a more

approximate configuration, and revert to higher accuracy

when required. This flexibility would be highly beneficial

in adaptive systems like smart sensors, mobile edge

devices, and error-resilient machine learning frameworks.

Furthermore, the design can be synthesized and deployed

on FPGA platforms for physical verification. This step

would enable real-time evaluation of metrics such as

power consumption, delay, area utilization, and thermal

characteristics.

Lastly, this multiplier can be integrated into larger

application-specific systems such as approximate

arithmetic logic units (ALUs), neural network processing

cores, or approximate DSP blocks. In domains like

convolutional neural networks (CNNs), where exact

multiplication is not always necessary, this design could

help reduce silicon area and power without significantly

affecting model accuracy. Retraining neural models with

this approximate hardware in the loop may even improve

robustness and efficiency. Overall, the presented

multiplier design opens the door to extensive hardware-

software co-design opportunities, advancing the field of

approximate and energy-aware computing.

REFERENCES

1. J. Han and M. Orshansky, "Approximate

computing: An emerging paradigm for energy-efficient

design," in Proc. 18th IEEE European Test Symposium

(ETS), 2013.

2. H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, J. Han,

"Approximate Arithmetic Circuits: A Survey," IEEE Design

& Test, 2021.

3. F. Lombardi et al., "QCA-based design using

majority logic," IEEE Transactions on Nanotechnology,

2014.

4. C. Labrado, H. Thapliyal, F. Lombardi, "Design of

Majority Logic Based Approximate Arithmetic Circuits,"

ISCAS, 2017.

5. J. Wang et al., "Low-power Approximate Full

Adders Using Majority Logic," Microelectronics Journal,

2019.

6. L. Liu, E. McLarnon, M. O’Neill, F. Lombardi,

"Design and Analysis of Majority Logic Based

Approximate Adders and Multipliers," IEEE Access, 2021.

7. M. V. Chittimilla, "Design of Approximate Full

Adder Using Majority Logic," JES Publication, 2022.

8. M. Mahdiani, A. Afzali-Kusha, M. Pedram,

"Approximate Compressors for Error-Resilient

Multipliers," IEEE Transactions on Computers, 2010.

9. L. Liu and E. McLarnon, "Majority Logic

Compressors for Approximate Multipliers,"

Microprocessors and Microsystems, 2022.

10. L. Liu et al., "Majority-Logic-Based Multipliers

with Bit Significance Control," IEEE Transactions on

Emerging Topics in Computing, 2023.

11. X. Zhang, Y. Zhang, "Application of MLAFA in

Image Processing," Journal of Circuits, Systems and

Computers, 2020.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025

ISSN:2250-3676 www.ijesat.com Page 720 of 721

12. L. Liu, T. Zhang, "Deep Learning Inference using

Majority Logic Arithmetic," IEEE Embedded Systems

Letters, 2022.

13. T. Givargis, F. Vahid, "FPGA-based Evaluation of

Majority Logic Approximate Circuits," IEEE Embedded

Systems Conference, 2021.

14. S. Majumdar et al., "Adaptive Majority Logic for

Error-Controlled Arithmetic Units," Design, Automation &

Test in Europe (DATE), 2022.

15. A. Nguyen, B. Razavi, "Hybrid Majority Logic

and CMOS Approximate Adders," ACM Transactions on

Embedded Computing Systems, 2023.

16. A. Singh, P. Chatterjee, "Reconfigurable

Approximate Arithmetic Using Majority Logic for Edge AI

Systems," IEEE Transactions on Circuits and Systems I,

2023.

17. K. Deepthi, S. Gopalakrishnan, "Pipelined

Majority Logic Based Approximate Multiplier for High-

Speed Applications," International Journal of

Reconfigurable Computing, 2022.

18. M. Zahoor, S. Kotiyal, "Area-Efficient Majority

Gate-Based Full Adder for QCA Technology,"

Microelectronics Journal, 2021.

19. J. Kaur, A. Bhatia, "Optimizing Hybrid Logic

Structures Using Majority Gate Variants in Approximate

Adders," International Journal of Electronics and

Communications, 2023.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025

ISSN:2250-3676 www.ijesat.com Page 721 of 721

	I. INTRODUCTION
	Approximate Arithmetic Circuits

	II. LITERATURE SURVEY
	III. METHODOLOGY&IMPLEMENTATION
	1. Majority Gate and Basic Logic
	2.1 2-bit MLAFA-a
	2.2 2-bit MLAFA-b
	3. 4-bit MLAFA Designs
	2. Approximate Adders (MLAFAs)
	4. ML-Based 8-bit Approximate Adder
	5. ML-Based 6:3 Compressor (MLAPC)
	6. Partial Product Generation for 8x8 Multiplication
	7. Final Addition and Product Generation

	IV. RESULTS AND DISCUSSION
	V. Conclusion And Future Scope
	REFERENCES

