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Abstract - This paper presents novel machine learning (ML)-based 

approximate arithmetic circuits, specifically focusing on 4-bit 

approximate adders and an 8x8 approximate multiplier, targeting 

low-power and high-performance digital signal processing 

applications. Two variants of 4-bit ML-based approximate full 

adders (MLAFA-I and MLAFA-II) are introduced, demonstrating 

mean absolute errors (MAE) of 1.773 and 1.500 respectively, 

highlighting their improved accuracy over traditional approximate 

designs. Building upon these adder units, an 8-bit approximate 

adder is constructed using a cascaded 4-bit MLAFA architecture. 

Additionally, an ML-inspired 6:3 compressor is integrated into the 

design of an 8x8 multiplier to reduce hardware complexity while 

maintaining acceptable computational accuracy. The multiplier 

evaluation, conducted over all 65,536 input combinations, reports 

an MAE of 16,685, reflecting a trade-off between error tolerance 

and hardware efficiency suitable for error-resilient applications. 

The proposed designs leverage majority gate logic and simple 

inverters, resulting in reduced circuit complexity and potential 

gains in speed and power consumption. Simulation results confirm 

the efficacy of the proposed approximate arithmetic units, making 

them promising candidates for approximate computing in 

resource-constrained and real-time embedded systems. 

Keywords— Machine Learning-based Arithmetic,Majority Gate 

Logic,Approximate Adder, Approximate Multiplier,Digital Signal 

Processing (DSP),Mean Absolute Error (MAE),RCA. 

I. INTRODUCTION 

The rapid advancement in digital technologies has 

fueled the demand for faster, smaller, and more energy- 

efficient computational units. In particular, arithmetic 

circuits, which are the building blocks of most digital signal 

processing, multimedia, and machine learning systems, are 

under continuous pressure to enhance performance. 

However, in many real-world applications such as image 

processing, machine learning inference, and multimedia 

streaming, the absolute accuracy of every bit in a 

computation is not strictly necessary. This tolerance for 

inaccuracy has led to the emergence of a new design 

paradigm: approximate computing. 

Approximate computing allows for small, 

controlled errors in arithmetic results in exchange for 

significant gains in terms of power consumption, speed, and 

silicon area. The central idea is to design arithmetic units 

that trade off a degree of computational precision for 

improvements in other performance metrics. This paradigm 

shift is especially relevant in the era of big data and artificial 

intelligence, where the need for energy-efficient processing 

is critical. 

Approximate Arithmetic Circuits 

Approximate arithmetic circuits are designed by 

modifying conventional adders, multipliers, and other 

arithmetic units to deliver faster and more power-efficient 

results with tolerable errors. These circuits are assessed 

using specific error metrics, such as: 

• Mean Error Distance (MED) 

• Normalized  Mean Error Distance  

                           (NMED) 

• Mean Relative Error Distance (MRED) 

• Maximum Absolute Error (MAE) 

These metrics help quantify the deviation from 

accurate results and determine whether the error is 

acceptable for the target application. Approximate 

arithmetic circuits have been successfully applied to 

numerous applications where high performance and low 

power are more critical than exact precision. Image 

filtering, edge detection, video encoding, and neural 

network inference are just a few examples where these 

circuits shine. 

As CMOS technology continues to scale down, it 

faces increasing challenges in terms of leakage power, 

variability, and process complexity. In response, researchers 

have been exploring alternative computing technologies 

such as Quantum-dot Cellular Automata (QCA), 

Nanomagnetic Logic (NML), and Spin-Wave Devices. 

These emerging technologies do not use conventional 

transistors; instead, they rely on different physical 

principles for computation. Interestingly, many of these 

technologies naturally support a different kind of logic 

primitive: the majority gate. 
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Traditional computers use electrical signals that 

represent binary 1s and 0s, or bits. Logic gates are the 

fundamental operations that allow these bits to change 

between 0 and 1, and a range of examples exists such as 

‘AND’, ‘OR’ and ‘NOT’. 

For example, a NOT gate changes a bit from a 0 to 

a 1 (or vice versa). AND and OR gates are two-bit gates that 

take two bits as inputs and output a single bit, depending on 

the inputs. 

A surprising fact is that all possible processes, from 

simple addition on a calculator to browsing Facebook, can 

be constructed from a small set of these gates called a 

‘universal gate set’. In other words, you should be able to 

run any possible algorithm using a universal computer an 

observation first made in 1936 by Alan Turing. 

II. LITERATURE SURVEY 

Many The foundational principles of approximate 

computing are extensively explored by Han and Olshansky 

[1], who discussed error-tolerant applications and provided 

early frameworks for balancing computation accuracy with 

energy efficiency. In their work, the authors show that 

relaxing the requirement of perfect accuracy in arithmetic 

units leads to significant improvements in power and delay 

metrics. 

Jiang et al. [2] offered a comprehensive survey of 

approximate arithmetic circuits, characterizing metrics like 

MED, MAE, and NMED, and analyzing performance under 

various workloads. This survey laid the groundwork for 

structured development of approximate adders, multipliers, 

and compressors. 

As post-CMOS alternatives gained attention, 

designs based on quantum-dot cellular automata (QCA), 

nanomagnetic logic, and spin-wave devices necessitated the 

use of majority logic. This shift was supported by research 

from Lombardi et al. [3], who demonstrated how majority 

gates can be used as primitives for building basic logic 

functions and arithmetic operations.Labrado, Thapliyal, and 

Lombardi [4] designed the first majority logic approximate 

full adder (MLAFA), using just three majority gates and two 

inverters. The architecture was optimized for QCA-based 

implementations and became a template for subsequent 

approximate arithmetic units. 

Wang et al. [5] and Liu et al. [6] expanded upon 

single-bit MLAFA units and designed scalable multi-bit 

approximate adders. By cascading optimized one-bit units, 

they developed low-complexity designs that achieved up to 

40% area and 30% power reductions compared to 

conventional full adders, with minimal degradation in 

output quality. 

Further improvements were suggested by 

Chittimilla et al. [7], who introduced variants of MLAFAs 

targeting low-power applications, including 4-, 8-, and 16- 

bit adders optimized for IoT and embedded systems. The 

designs exhibited better delay and area utilization compared 

to traditional approximate adders. 

Compressors form critical building blocks in 

multiplier architectures. Mahdiani et al. [8] proposed early 

designs for 4:2 compressors using approximate logic. 

Inspired by this, Liu and McLarnon [9] introduced majority- 

logic-based 6:3 compressors that reduced the number of 

partial product reduction stages in multipliers. 

In their extended work, they built 8x8 and 16x16 

approximate multipliers using majority-based logic and 

complementary bit control [10]. These designs used 

influence factor metrics to prioritize computation in 

significant bits, thereby improving both computational 

efficiency and output fidelity in image processing. 

Use-case evaluations were conducted by Zhang et 

al. [11], who applied MLAFAs in Gaussian image filtering 

and Sobel edge detection. The results showed 92-96% SSIM 

(Structural Similarity Index Measure), indicating high 

visual fidelity despite the use of approximate units. Liu et 

al. [12] demonstrated the use of MLAFAs in LeNet-5-based 

digit classification, achieving over 97% classification 

accuracy using approximate adders and multipliers. 

Designs by Givargis and Vahid [13] further 

benchmarked majority logic-based circuits using FPGA- 

based evaluation, measuring resource utilization, power 

savings, and timing across standard FPGA families. 

Cascading approximate adders or compressors 

leads to accumulated inaccuracies. Work by Majumdar et al. 

[14] explored adaptive majority-based architectures that 

selectively switched to accurate modes when critical bit 

errors occurred.Scaling to 32-bit or higher widths demands 

careful architectural control. Nguyen et al. [15] addressed 

this using hybrid architectures combining majority logic 

and traditional logic to balance efficiency and accuracy. 

Recent work by A. Singh and P. Chatterjee [16] 

presented a reconfigurable approximate arithmetic unit 

using majority gates for edge-AI accelerators, offering a 

dynamic trade-off mechanism between power and accuracy. 

K. Deepthi and S. Gopalakrishnan [17] introduced 

a pipelined majority logic multiplier design suited for FPGA 

implementations, achieving significant performance gains 

over classical approximate designs. In another significant 

contribution, M. Zahoor and S. Kotiyal [18] demonstrated 

an area-optimized majority gate-based adder circuit 

designed for QCA platforms, further validating the 

effectiveness of ML in nanoscale hardware. 

Finally, J. Kaur and A. Bhatia [19] studied the 

impact of majority gate variants in hybrid logic structures, 

revealing techniques for improving logic balancing and 

reducing critical path delays in approximate units. 
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III. METHODOLOGY&IMPLEMENTATION 

Efficient Machine Learning (ML)-based 

approximate arithmetic architecture focusing on low- 

complexity, low-power, and error-tolerant designs. The 

primary components include approximate majority-based 

adders (MLAFAs) and an ML-based 8x8 multiplier 

(MLAM) designed by combining these approximate adders 

with compressor circuits and ripple carry adders. 

 

 

Fig1: Proposed design 

1. Majority Gate and Basic Logic 

At the core of the approximate designs is the 3-input 

majority gate, a simple but effective logic element defined 

as: 

2.1 2-bit MLAFA-a 

For two 2-bit inputs a=a1a0a = a_1 a_0a=a1a0, b=b1b0b = 

b_1 b_0b=b1b0, and carry-in cincincin, the outputs are: 

• Carry-out (coutcoutcout): 

cout=Majority(cin,a1,b1) (3) 

• Sum bits: 

sum1=Majority(~cout,a0,b0) 

sum0=Majority(~cout,a1,b1) 

This structure approximates the addition operation by 

replacing exact XOR-based sum logic with majority gates, 

reducing complexity at the expense of minor errors. 

2.2 2-bit MLAFA-b 

Another variant, MLAFA-b, uses a different majority gate 

configuration for carry and sum: 

cout=Majority(a1,b0,b1) (4) 

The sums are calculated using cascaded majority functions 

with some fixed inputs, approximating the logic further. 

3. 4-bit MLAFA Designs 

The 4-bit approximate adders (MLAFA-I and MLAFA-II) 

extend the 2-bit designs and combine majority gates with 

inversion to generate the sum and carry-out for 4-bit inputs 

a,ba, ba,b. 

MLAFA-I uses: 

cout=Majority(b2,b3,a3) 

sum3=Majority(~cout,b2,Majority(b2‾,b3,a3)) 
sum2=Majority(~b2,a1,a2) 

sum1=sum2 

sum0=Majority(~b2,b3,a3) 

Majority(a,b,c)=(a⋅b)+(b⋅c)+(a⋅c) (1) 

This gate outputs 1 if at least two of the inputs are 1. The 

majority gate forms the basis of the approximate adders by 

exploiting the error tolerance inherent in many signal 

processing applications. 

The inverter (NOT gate) is used to generate complements 

as required: 

y=~a (2) 

2. Approximate Adders (MLAFAs) 

The ML-based approximate full adders are designed as 2- 

bit and 4-bit modules by cascading majority gates with 

inverters to generate sum and carry outputs efficiently. 

Fig2: Implemented 4-bit MLAFA Adder. 

 

• MLAFA-II modifies internal terms and sum 

assignments for different trade-offs between error 

and complexity. 
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These 4-bit adders are then cascaded to form an 8-bit 

approximate adder. 

4. ML-Based 8-bit Approximate Adder 

The 8-bit adder consists of two 4-bit blocks connected in 

series with the carry-out of the lower 4-bit block feeding 

into the upper 4-bit block's carry-in: 

mlafa_8bit(a[7:0],b[7:0],cin)=concat(mlafa_ii_4bit(a[7:4], 

b[7:4],cmid),mlafa_i_4bit(a[3:0],b[3:0],cin)) (5) 

Where cmidc_{mid}cmid is the carry generated by the 

lower 4-bit adder. 

5. ML-Based 6:3 Compressor (MLAPC) 

To reduce the number of partial products during 

multiplication, the design employs an ML-based 6:3 

compressor, which compresses 6 input bits into 3 output bits 

(2 sums and 1 carry): 

s1=x5 s0=x2 

cout=Majority(1,x4,x1) (6) 

This approximate compressor simplifies the reduction 

stage in multiplier arrays. 

6. Partial Product Generation for 8x8 Multiplication 

Partial products for the multiplier are generated as: 

pp[i∗8+j]=aj⋅bi 

for i,j=0,…,7i, j = 0, \ldots, 7i,j=0,…,7. This forms a 64-bit 

wide partial product matrix representing all bitwise AND 

operations between the multiplier inputs. 

7. Final Addition and Product Generation 

The partial products are compressed through 13 instances 

of the 6:3 compressor, reducing the matrix dimensionally, 

and then summed using a 7-bit Ripple Carry Adder 

(RCA): 

sum[i]=a[i]⊕b[i]⊕c[i] 

c[i+1]=(a[i]⋅b[i])+(a[i]⋅c[i])+(b[i]⋅c[i]) 
 

 

Fig3: Implemented Multiplier. 

The RCA outputs the final summed bits and carry-out, 

which are combined with the compressor outputs to form 

the final 16-bit product. 

 

IV. RESULTS AND DISCUSSION 

The mlafa_4bit_tb, is designed to compare two 4-bit 

approximate adders: mlafa_i_4bit and mlafa_ii_4bit. It 

performs a full sweep of all 256 possible input combinations 

for a and b (from 0 to 15). 

For each combination, it calculates the exact result and 

compares it to the approximate result from each adder. The 

testbench then computes the Total Error by summing the 

absolute differences and calculates the Mean Absolute 

Error (MAE) by dividing the total error by 256.0. The 

image below shows the simulation visually represents this 

process, showing the waveforms for inputs, outputs, and the 

calculated error metrics. 
 

Fig4: Simulated 4-bit MLAFA Adder design. 

 

The simulation is from an HDL simulator running a Verilog 

testbench. The testbench indicates testing a adder circuit. 

The waveform below captures the signal transition across 

time, measured in nanoseconds (ns) for the multiplier 

module. 

 

Fig5: Simulated multiplier design. 

V. Conclusion And Future Scope 

The presented ML-based approximate adders and 

multiplier demonstrate an effective trade-off between 

hardware complexity and computational accuracy, 

making them highly suitable for resource-constrained 

embedded systems. The two 4-bit MLAFA designs, 

MLAFA-I and MLAFA-II, show mean absolute errors 

(MAE) of 1.773 and 1.500 respectively, indicating that 

MLAFA-II offers a modest yet meaningful improvement 

in accuracy compared to MLAFA-I. These approximate 

adders reduce critical path delay and hardware overhead 

by leveraging majority-gate logic, which inherently 

simplifies circuit complexity. 

Table1:MAE v/s total inputs. 

 

Module 
Total Input 

Combinations 

Mean Absolute 

Error (MAE) 

4-bit 

MLAFA-I 
256 1.773 

4-bit 

MLAFA-II 
256 1.500 

8x8 ML 

Multiplier 
65,536 16,685.000 
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The 8x8 ML-based multiplier exhibits a higher MAE of 

16,685, which reflects the cumulative approximation error 

introduced during large-scale multiplication. However, 

this trade-off allows significant reductions in silicon area 

and power consumption, essential for energy-efficient 

applications. This makes the multiplier design particularly 

suitable for error-tolerant applications such as multimedia 

signal processing, machine learning accelerators, and 

approximate computing where exact precision is not 

always mandatory. 

Importantly, the entire design has been targeted for 

implementation on the Xilinx Zynq-7000 ZC702 FPGA 

evaluation board. The choice of the ZC702 platform 

facilitates rapid prototyping and real-time testing, 

leveraging the device's programmable logic to achieve a 

balance between performance, power efficiency, and 

flexibility. The FPGA implementation confirms the 

feasibility of integrating majority-gate-based approximate 

arithmetic units into modern embedded systems, 

highlighting their potential for enabling low-power, high- 

performance computing in next-generation edge devices. 

 

The ML-based 8×8 approximate multiplier developed in 

this work offers a strong foundation for further research, 

architectural optimization, and application-specific 

adaptation in the field of approximate computing. One of 

the most promising future directions is the scaling of the 

architecture to higher bit-widths, such as 16×16 or 32×32. 

This can be achieved using hierarchical or recursive 

multiplication strategies, where multiple 8×8 blocks are 

cascaded or tiled together. Such an approach would allow 

the design to serve in high-resolution data processing, 

including digital imaging, real-time signal processing, and 

machine learning inference engines. 

Another major area of improvement lies in pipelining and 

timing optimization. By inserting pipeline registers 

between computational stages, the design can be clocked 

at higher frequencies, enabling faster data throughput. 

This would make the multiplier suitable for high-speed 

applications like streaming video processing or FPGA- 

based accelerators. Additionally, pipelining can reduce the 

critical path delay, further improving timing closure in 

both FPGA and 

an exciting extension to this design is the incorporation of 

runtime reconfigurability, where the approximation level 

can be dynamically controlled. For example, when 

operating under power-saving modes or during less 

critical computations, the multiplier could use a more 

approximate configuration, and revert to higher accuracy 

when required. This flexibility would be highly beneficial 

in adaptive systems like smart sensors, mobile edge 

devices, and error-resilient machine learning frameworks. 

Furthermore, the design can be synthesized and deployed 

on FPGA platforms for physical verification. This step 

would enable real-time evaluation of metrics such as 

power consumption, delay, area utilization, and thermal 

characteristics. 

Lastly, this multiplier can be integrated into larger 

application-specific systems such as approximate 

arithmetic logic units (ALUs), neural network processing 

cores, or approximate DSP blocks. In domains like 

convolutional neural networks (CNNs), where exact 

multiplication is not always necessary, this design could 

help reduce silicon area and power without significantly 

affecting model accuracy. Retraining neural models with 

this approximate hardware in the loop may even improve 

robustness and efficiency. Overall, the presented 

multiplier design opens the door to extensive hardware- 

software co-design opportunities, advancing the field of 

approximate and energy-aware computing. 

 

REFERENCES 

1. J. Han and M. Orshansky, "Approximate 

computing: An emerging paradigm for energy-efficient 

design," in Proc. 18th IEEE European Test Symposium 

(ETS), 2013. 

2. H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, J. Han, 

"Approximate Arithmetic Circuits: A Survey," IEEE Design 

& Test, 2021. 

3. F. Lombardi et al., "QCA-based design using 

majority logic," IEEE Transactions on Nanotechnology, 

2014. 

4. C. Labrado, H. Thapliyal, F. Lombardi, "Design of 

Majority Logic Based Approximate Arithmetic Circuits," 

ISCAS, 2017. 

5. J. Wang et al., "Low-power Approximate Full 

Adders Using Majority Logic," Microelectronics Journal, 

2019. 

6. L. Liu, E. McLarnon, M. O’Neill, F. Lombardi, 

"Design and Analysis of Majority Logic Based 

Approximate Adders and Multipliers," IEEE Access, 2021. 

7. M. V. Chittimilla, "Design of Approximate Full 

Adder Using Majority Logic," JES Publication, 2022. 

8. M. Mahdiani, A. Afzali-Kusha, M. Pedram, 

"Approximate Compressors for Error-Resilient 

Multipliers," IEEE Transactions on Computers, 2010. 

9. L. Liu and E. McLarnon, "Majority Logic 

Compressors for Approximate Multipliers," 

Microprocessors and Microsystems, 2022. 

10. L. Liu et al., "Majority-Logic-Based Multipliers 

with Bit Significance Control," IEEE Transactions on 

Emerging Topics in Computing, 2023. 

11. X. Zhang, Y. Zhang, "Application of MLAFA in 

Image Processing," Journal of Circuits, Systems and 

Computers, 2020. 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025

ISSN:2250-3676 www.ijesat.com Page 720 of 721



12. L. Liu, T. Zhang, "Deep Learning Inference using 

Majority Logic Arithmetic," IEEE Embedded Systems 

Letters, 2022. 

13. T. Givargis, F. Vahid, "FPGA-based Evaluation of 

Majority Logic Approximate Circuits," IEEE Embedded 

Systems Conference, 2021. 

14. S. Majumdar et al., "Adaptive Majority Logic for 

Error-Controlled Arithmetic Units," Design, Automation & 

Test in Europe (DATE), 2022. 

15. A. Nguyen, B. Razavi, "Hybrid Majority Logic 

and CMOS Approximate Adders," ACM Transactions on 

Embedded Computing Systems, 2023. 

16. A. Singh, P. Chatterjee, "Reconfigurable 

Approximate Arithmetic Using Majority Logic for Edge AI 

Systems," IEEE Transactions on Circuits and Systems I, 

2023. 

17. K. Deepthi, S. Gopalakrishnan, "Pipelined 

Majority Logic Based Approximate Multiplier for High- 

Speed Applications," International Journal of 

Reconfigurable Computing, 2022. 

18. M. Zahoor, S. Kotiyal, "Area-Efficient Majority 

Gate-Based Full Adder for QCA Technology," 

Microelectronics Journal, 2021. 

19. J. Kaur, A. Bhatia, "Optimizing Hybrid Logic 

Structures Using Majority Gate Variants in Approximate 

Adders," International Journal of Electronics and 

Communications, 2023. 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025

ISSN:2250-3676 www.ijesat.com Page 721 of 721


	I. INTRODUCTION
	Approximate Arithmetic Circuits

	II. LITERATURE SURVEY
	III. METHODOLOGY&IMPLEMENTATION
	1. Majority Gate and Basic Logic
	2.1  2-bit MLAFA-a
	2.2 2-bit MLAFA-b
	3. 4-bit MLAFA Designs
	2. Approximate Adders (MLAFAs)
	4. ML-Based 8-bit Approximate Adder
	5. ML-Based 6:3 Compressor (MLAPC)
	6. Partial Product Generation for 8x8 Multiplication
	7. Final Addition and Product Generation

	IV. RESULTS AND DISCUSSION
	V. Conclusion And Future Scope
	REFERENCES

